投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

Improving Representation of Tropical Cloud

来源:热带地理 【在线投稿】 栏目:期刊导读 时间:2020-12-24
作者:网站采编
关键词:
摘要:1. Introduction The simulation of clouds has been a major source of uncertainty in projections of future climate using general circulation models (GCMs) (Stephens, 2005; Li et al.,2009; Bony et al., 2015). One limitation of cloud simulation

1. Introduction

The simulation of clouds has been a major source of uncertainty in projections of future climate using general circulation models (GCMs) (Stephens, 2005; Li et al.,2009; Bony et al., 2015). One limitation of cloud simulation is the coarse spatial resolution of GCMs (tens of kilometers to 100-200 km), which leaves clouds smaller than grid size unresolved (Barker et al., 2003; Randall et al., 2003). Consequently, clouds in GCMs usually cover only part of a grid layer and the overlap of fractional clouds in the vertical layers has to be addressed artificially in radiation calculations by imposing overlap assumptions (Tompkins and Di Giuseppe, 2015; Zhang and Jing, 2016). For a given vertical distribution of cloud fractions, the assumption of cloud overlap determines the total cloud cover or total cloud fraction (Ctot), which has a considerable influence on solar and terrestrial radiative transfer (Wang et al., 2016).

The cloud overlap assumption most widely used in recent decades is the maximum random overlap (MRO) assumption (Morcrette and Fouquart, 1986; Tian and Curry, 1989), in which clouds within layers that are vertically continuous are assumed to have a maximum overlap, whereas those that are separated by cloud-free layers are considered to overlap randomly. Such treatment is insufficient to represent the realistic features of cloud overlap as observed by ground-based radar (Hogan and Illingworth, 2000; Mace and Benson-Troth, 2002) and depends largely on the vertical resolution of the host model (Bergman and Rasch, 2002).

In contrast with the simple, crude cloud overlap treatments such as the MRO assumption, Liang and Wang(1997) were among the first to explicitly depict the subgrid distribution of clouds of distinct physical types and to apply different treatments of vertical overlap for different types of clouds. This sophisticated, physically based treatment of cloud overlap (termed “mosaic”) has been demonstrated to improve cloud radiative forcing and radiative heating in both cloud-resolving model(CRM) domains (Liang and Wu, 2005; Wu and Liang,2005a, b) and climate simulations (Zhang F. et al., 2013).

Another ingenious approach is the analytical representation of cloud overlap proposed by Hogan and Illingworth (2000) and Mace and Benson-Troth (2002) based on radar observations. This method is called general overlap (GenO). In GenO, for two layers of clouds at heights of Zk and Zl with cloud fractions of Ck and Cl, respectively, Ctot is defined as

Lcf is the decorrelation length (in km) representing theEqs. (1) and (2), the extent of overlap degrades exponentially from maximum overlap to random overlap as the vertical separation of clouds increases. This relationship of decreasing overlap with increasing distance has been reported from both radar observations and simulations by CRMs (Oreopoulos and Khairoutdinov, 2003). The merits of GenO are two-fold: (1) it realistically depicts the distance-related feature of cloud overlap and (2) it is independent of the vertical resolution of the host model and thus more widely applicable among models with various vertical configurations.

In GenO, the extent of cloud overlap is determined by Lcf. For given fractional clouds in a vertical column, the use of larger values of Lcf results in smaller values of Ctot(prone to maximum overlap) and smaller values of Lcf result in larger values of Ctot (prone to random overlap).The parameter Lcf is highly variable both spatially and temporally because of variations in the shapes and formation processes of clouds. Therefore, when applying GenO, one challenge is to determine an optimum value of Lcf for each GCM grid point. Various attempts have been made to obtain detailed information about Lcf (e.g.,Di Giuseppe, 2005; Kato et al., 2010; Shonk et al., 2010;Oreopoulos et al., 2012; Peng et al., 2013; Zhang H. et al., 2013). It has been demonstrated that Lcf is related to the cloud type and atmospheric dynamics (Naud et al.,2008; Di Giuseppe and Tompkins, 2015; Li et al., 2015)and that it has a global median value of approximately 2 km (Barker, 2008). Simplified expressions have also been extracted to represent Lcf in GCMs, either as a function of latitude and/or season without interannual variations (Shonk et al., 2010, Oreopoulos et al., 2012; Jing et al., 2016) or as a function of cloud type, which is affected by the limited cloud classification schemes of the host models (Zhang et al., 2014). These approaches either lack a direct link between Lcf and the instant largescale meteorological conditions that foster the clouds or address the dynamic (e.g., wind shear) impact on cloud overlap over the globe without considering the very different circulation conditions in different regions.

The formation and evolution of clouds are essentially associated with large-scale circulation (Bony et al.,1997). Therefore one physically robust approach to describe Lcf is to establish a direct connection between Lcf and large-scale circulation conditions. CRMs, because of their ability to simulate cloud micro- and macro-physical structures as well as meteorological conditions in detail,have long been used as a tool to explore cloud physics and to obtain parameterizations applicable in GCMs(GEWEX Cloud System Science Team, 1993; Randall et al., 2003; Wu and Li, 2008). This study uses simulation results from a global CRM to explore the relationship between Lcf and atmospheric circulation. Unlike previous studies that attempted to explore such a relationship over the whole globe, we focus on the tropical region and vertical motion only, considering that there are large uncertainties in cloud radiative forcing due to vertical overlap treatment in the intertropical convective zone (ITCZ)(Barker and R?is?nen, 2005; Zhang and Jing, 2010;Lauer and Hamilton, 2013) and that the formation and maintenance of clouds in this particular region are closely related to vertical convection. We will attempt to establish a statistical, mathematical description of the Lcf-convection connection, which is a novel application in GCMs, and then evaluate its effectiveness in improving the GCM-scale cloud cover and radiation calculations.

文章来源:《热带地理》 网址: http://www.rddlzz.cn/qikandaodu/2020/1224/453.html



上一篇:中国:我的梦·我的爱
下一篇:小学教育专业教育见习与实习课程建设与改革研

热带地理投稿 | 热带地理编辑部| 热带地理版面费 | 热带地理论文发表 | 热带地理最新目录
Copyright © 2018 《热带地理》杂志社 版权所有
投稿电话: 投稿邮箱: